10,248 research outputs found

    Novel ordering of the pyrochlore Heisenberg antiferromagnet with the ferromagnetic next-nearest-neighbor interaction

    Full text link
    The ordering property of the classical pyrochlore Heisenberg antiferromagnet with the ferromagnetic next-nearest-neighbor interaction is investigated by means of a Monte Carlo simulation. The model is found to exhibit a first-order transition at a finite temperature into a peculiar ordered state. While the spin structure factor, i.e., the thermal average of the squared Fourier amplitude of the spin, exhibits a finite long-range order characterized by the commensurate spin order of the period four, the thermal average of the spin itself almost vanishes. It means that, although the amplitude of the spin Fourier component is long-range ordered, the associated phase degree of freedom remains to be fluctuating.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Preparing pseudo-pure states with controlled-transfer gates

    Full text link
    The preparation of pseudo-pure states plays a central role in the implementation of quantum information processing in high temperature ensemble systems, such as nuclear magnetic resonance. Here we describe a simple approach based on controlled-transfer gates which permits pseudo-pure states to be prepared efficiently using spatial averaging techniques.Comment: Significantly revised and extended: now 7 pages including 3 figures; Phys. Rev. A (in press

    Anti-pheromone as a tool for better exploration of search space

    Get PDF
    Many animals use chemical substances known as pheromones to induce behavioural changes in other members of the same species. The use of pheromones by ants in particular has lead to the development of a number of computational analogues of ant colony behaviour including Ant Colony Optimisation. Although many animals use a range of pheromones in their communication, ant algorithms have typically focused on the use of just one, a substance that encourages succeeding generations of (artificial) ants to follow the same path as previous generations. Ant algorithms for multi-objective optimisation and those employing multiple colonies have made use of more than one pheromone, but the interactions between these different pheromones are largely simple extensions of single criterion, single colony ant algorithms. This paper investigates an alternative form of interaction between normal pheromone and anti-pheromone. Three variations of Ant Colony System that apply the anti-pheromone concept in different ways are described and tested against benchmark travelling salesman problems. The results indicate that the use of anti-pheromone can lead to improved performance. However, if anti-pheromone is allowed too great an influence on ants' decisions, poorer performance may result

    Low-dimensional chaos induced by frustration in a non-monotonic system

    Full text link
    We report a novel mechanism for the occurrence of chaos at the macroscopic level induced by the frustration of interaction, namely frustration-induced chaos, in a non-monotonic sequential associative memory model. We succeed in deriving exact macroscopic dynamical equations from the microscopic dynamics in the case of the thermodynamic limit and prove that two order parameters dominate this large-degree-of-freedom system. Two-parameter bifurcation diagrams are obtained from the order-parameter equations. Then we analytically show that the chaos is low-dimensional at the macroscopic level when the system has some degree of frustration, but that the chaos definitely does not occur without the frustration.Comment: 2 figure

    Ordering of the Heisenberg Spin Glass in High Dimensions

    Full text link
    Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian coupling is investigated by equilibrium Monte Carlo simulations in four and five dimensions. Ordering of the mean-field Heisenberg spin-glass is also studied for comparison. Particular attention is paid to the nature of the spin-glass and the chiral-glass orderings. Our numerical data suggest that, in five dimensions, the model exhibits a single spin-glass transition at a finite temperature, where the spin-glass order accompanying the simultaneous chiral-glass order sets in. In four dimensions, by contrast, the model exhibits a chiral-glass transition at a finite temperature, not accompanying the standard spin-glass order. The critical region associated with the chiral-glass transition, however, is very narrow, suggesting that dimension four is close to the marginal dimensionality.Comment: 18 pages, 12 figure

    Resonant speed meter for gravitational wave detection

    Full text link
    Gravitational-wave detectors have been well developed and operated with high sensitivity. However, they still suffer from mirror displacement noise. In this paper, we propose a resonant speed meter, as a displacement noise-canceled configuration based on a ring-shaped synchronous recycling interferometer. The remarkable feature of this interferometer is that, at certain frequencies, gravitational-wave signals are amplified, while displacement noises are not.Comment: 4 pages, 4 figure

    Ordering of the Heisenberg spin glass in two dimensions

    Full text link
    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbor Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behavior of the spin and the chirality correlation lengths. In order to observe the true asymptotic behavior, fairly large system size L\gsim 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than spin correlation length, whereas at lower temperatures below the crossover temperature T_\times, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T_\times to be \nu_SG=0.9+-0.2 and \nu_CG=2.1+-0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behavior realized below T_\times.Comment: to appear in a special issue of J. Phys.

    Dynamical Critical Phenomena in three-dimensional Heisenberg Spin Glasses

    Full text link
    Spin-glass (SG) and chiral-glass (CG) orderings in three dimensional (3D) Heisenberg spin glass with and without magnetic anisotropy are studied by using large-scale off-equilibrium Monte Carlo simulations. A characteristic time of relaxation, which diverges at a transition temperature in the thermodynamic limit, is obtained as a function of the temperature and the system size. Based on the finite-size scaling analysis for the relaxation time, it is found that in the isotropic Heisenberg spin glass, the CG phase transition occurs at a finite temperature, while the SG transition occurs at a lower temperature, which is compatible with zero. Our results of the anisotropic case support the chirality scenario for the phase transitions in the 3D Heisenberg spin glasses.Comment: 9 pages, 19 figure

    Periodicity and criticality in the Olami-Feder-Christensen model of earthquakes

    Full text link
    Characteristic versus critical features of earthquakes are studied on the basis of the Olami-Feder-Christensen model. It is found that the local recurrence-time distribution exhibits a sharp δ\delta-function-like peak corresponding to rhythmic recurrence of events with a fixed ``period'' uniquely determined by the transmission parameter of the model, together with a power-law-like tail corresponding to scale-free recurrence of events. The model exhibits phenomena closely resembling the asperity known in seismology

    Catalogue of 12CO(J=1-0) and 13CO(J=1-0) Molecular Clouds in the Carina Flare Supershell

    Full text link
    We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data cover a region of ~66 square degrees and were taken with the NANTEN 4m telescope, at spatial and velocity resolutions of 2.6' and 0.1 km/s. Decomposition of the emission results in the identification of 156 12CO clouds and 60 13CO clouds, for which we provide observational and physical parameters. Previous work suggests the majority of the detected mass forms part of a comoving molecular cloud complex that is physically associated with the expanding shell. The cloud internal velocity dispersions, degree of virialization and size-linewidth relations are found to be consistent with those of other Galactic samples. However, the vertical distribution is heavily skewed towards high-altitudes. The robust association of high-z molecular clouds with a known supershell provides some observational backing for the theory that expanding shells contribute to the support of a high-altitude molecular layer.Comment: To be published in PASJ Vol. 60, No. 6. (Issued on December 25th 2008). 35 pages (including 13 pages of tables), 7 figures. Please note that formatting problems with the journal macro result in loss of rightmost data columns in some long tables. These will be fixed in the final published issue. In the meantime, please contact the authors for missing dat
    • …
    corecore